Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.07.519404

ABSTRACT

Host-based antivirals could offer broad-spectrum therapeutics and prophylactics against the constantly-mutating viruses including the currently-ravaging coronavirus, yet must target cellular vulnerabilities of viruses without grossly endangering the host. Here we show that the master lipid regulator SREBP1 couples the phospholipid scramblase TMEM41B to constitute a host “metabolism-to-manufacture” cascade that maximizes membrane supplies to support coronaviral genome replication, harboring biosynthetic enzymes including Lipin1 as druggable viral-specific-essential (VSE) host genes. Moreover, pharmacological inhibition of Lipin1, by a moonlight function of the widely-prescribed beta-blocker Propranolol, metabolically uncouples the SREBP1-TMEM41B cascade and consequently exhibits broad-spectrum antiviral effects against coronaviruses, Zika virus, and Dengue virus. The data implicate a metabolism-based antiviral strategy that is well tolerated by the host, and a potential broad-spectrum medication against current and future coronavirus diseases.


Subject(s)
Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL